如图,是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成…第n(n是正整数)个图案由多少个基础图形组成的呢

从前三个图形可以找出规律:第1个图案基本图形的个数为:4=1×3+1;第2个图案基本图形的个数为:7=2×3+1;第3个图案基本图形的个数为:
10=3×3+1…因此第n个图案基本图形的个数就可以知道了,你能写出来吗?试试看.
第一个图案基础图形的个数:3+1=4;
第二个图案基础图形的个数:3×2+1=7;
第三个图案基础图形的个数:3×3+1=10;
…
第n个图案基础图形的个数就应该为:3n+1.
探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。掌握探究的一般方法是解决此类问题的关键。
(1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律; (2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。