所有栏目

(本题满分12分)设函数满足:对任意都有,且(1)求的值;(2)求的值;(3)判断函

作者:河北省南和县河郭乡校区

题目内容:

(本题满分12分)

设函数满足:对任意都有,且

(1)求的值;

(2)求的值;

(3)判断函数是否具有奇偶性,并证明你的结论。

正确答案:

(1)

(2)

(3)函数是奇函数。

答案解析:

(1)令,得:

∵对任意都有,∴,从而

(2)∴

(3)由题知:函数的定义域为

∴函数是奇函数

考点核心:

1、映射:

(1)设A,B是两个非空集合,如果按照某一个确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的元素y与之对应,那么,就称对应f:A→B为从集合A到集合B的映射,记作:f:A→B。

(2)像与原像:如果给定一个集合A到集合B的映射,那么,和集合A中的a对应的集合B中的b叫做a的像,a叫做b的原像。

2、函数:

(1)定义(传统):如果在某变化过程中有两个变量x,y并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么y就是x的函数,x叫做自变量,x的取值范围叫做函数的定义域,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

(2)函数的集合定义:设A,B都是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个元素x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:x→y为从集合A到集合B的一个函数,记作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数f(x)的定义域,与x的值相对应的y值叫做函数值,函数值的集合{ f(x)|x∈A}叫做函数f(x)的值域。显然值域是集合B的子集。

3、构成函数的三要素:定义域,值域,对应法则。 值域可由定义域唯一确定,因此当两个函数的定义域和对应法则相同时,值域一定相同,它们可以视为同一函数。

4、函数的表示方法:

(1)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达的,则这种表示函数的方法叫做解析式法; (2)列表法:用表格的形式表示两个量之间函数关系的方法,称为列表法;

(3)图象法:就是用函数图象表示两个变量之间的关系。 注意:函数的图象可以是一个点,或一群孤立的点,或直线,或直线的一部分,或若干曲线组成。

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学