所有栏目

2015年中考数学二次函数知识点:选择题及解析八

作者:人教版初中数学目录2012

一、选择题

8.(2014o孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:

①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.

其中正确结论的个数为()

A.1个B.2个C.3个D.4个

考点:二次函数图象与系数的关系;抛物线与x轴的交点

专题:数形结合.

分析:由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.

解答:解:∵抛物线与x轴有两个交点,

∴b2﹣4ac>0,所以①错误;

∵顶点为D(﹣1,2),

∴抛物线的对称轴为直线x=﹣1,

∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,

∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,

∴当x=1时,y<0,

∴a+b+c<0,所以②正确;

∵抛物线的顶点为D(﹣1,2),

∴a﹣b+c=2,

∵抛物线的对称轴为直线x=﹣=1,

∴b=2a,

∴a﹣2a+c=2,即c﹣a=2,所以③正确;

∵当x=﹣1时,二次函数有最大值为2,

即只有x=1时,ax2+bx+c=2,

∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.

故选C.

点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学