已知Sn是数列{an}的前n项和,点(n,Snn)(n∈N*)均在函数y=3x-2的图象上.
(1)求数列{an}的通项公式;
(2)若bn+1-bn=2an,且b1=-1,求数列{bn}的通项公式.
(1)由题意知,Snn=3n-2,即Sn=3n2-2n
当n=1时a1=S1=1
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,且对于n=1时也适合,所以an=6n-5
(2)∵bn+1-bn=2an=2(6n-5)
∴b2-b1=2×1
b3-b2=2×7
b4-b3=2×13
…
bn-bn-1=2(6n-11)(n≥2)
bn-b1=2×(n-1)(16n-11)2=6n2-16n+10
bn=6n2-16n+9 (n≥2),又b1=-1,
综上所述,an=-1n=16n2-16n+9
Snn
等差数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。