所有栏目

初中数学设计教案

作者:范文虾

一 、教学目标

(一)基础知识目标:

1。理解方程的概念,掌握如何判断方程。

2。理解用字母表示数的好处。

(二)能力目标

体会字母表示数的好处,画示意图有利于分析问题,找相等关系是列方程的重要一步,从算式到方程(从算术到代数)是数学的一大进步。

(三)情感目标

增强用数学的意识,激发学习数学的热情。

二、教学重点

知道什么是方程、一元一次方程,找相等关系列方程。

三、教学难点

如何找相等关系列方程

四、教学过程

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系。因此对于

任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程。

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤。

师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例1 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库 原来有多少面粉?

师生共同分析:

1。本题中给出的已知量和未知量各是什么?

2。已知量与未知量之间存在着怎样的相等关系?(原来重量—运出重量=剩余重量)

若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x—15%x=42 500,

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量—剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量—运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的`方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意。即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系。(这是关键一步);

(3)根据相等关系,正确列出方程。即所列的方程应满足两边的量要相等;

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果

分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一

小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨。解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误。并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x—(5—4),

解这个方程: 2x=10,

所以 x=5。

其苹果数为 3× 5+9=24。

答:第一小组有5名同学,共摘苹果24个。

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程。

(设第一小组共摘了x个苹果,则依题意,得 )

课堂练习:

1。买4本练习本与3支铅笔一共用了1。24元,已知铅笔每支0。12元,问 练习本每本多少元?

2某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数。

五、课堂小结

首先,让学生回答如下问题:

1。本节课学习了哪些内容?

2。列一元一次方程方法和步骤是什么?

3。在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;

布列方程)

(2)以上步骤同学应在理解的基础上记忆。

六、作业布置

1。买3千克苹果,付出10元,找回3角4分。问每千克苹果多少钱?

2。用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学