根据某地区2005-2015年农作物种植面积(X)与农作物产值(Y),可以建立一元线性回归模型,估计结果得到判定系数=0.9,回归平方和ESS=90,则回归模型的残差平方和RSS为()。
A 、10
B 、100
C 、90
D 、81
【正确答案:A】
1、随机误差项是一个期望值或平均值为0的随机变量;
2、对于解释变量的所有观测值,随机误差项有相同的方差;
3、随机误差项彼此不相关;
4、解释变量是确定性变量,不是随机变量,与随机误差项彼此之间相互独立;
5、解释变量之间不存在精确的(完全的)线性关系,即解释变量的样本观测值矩阵是满秩矩阵;
6、随机误差项服从正态分布。
扩展资料:
线性回归方程是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一。线性回归也是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。按自变量个数可分为一元线性回归分析方程和多元线性回归分析方程。
线性回归有很多实际用途。分为以下两大类:
1 如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
2 给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
参考资料:百度百科——线性回归方程
回归直线方程y=a+bx过定点(0,a)
表示自变量x每变动一个计量单位时因变量y的平均变动值,数学上称为直线的斜率,也称回归系数。
回归系数含义是说当其他因素不变时,自变量的以单位变化引起的因变量的变化程度。
回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。当Y=f(X)的形式是一个直线方程时,称为一元线性回归。这个方程一般可表示为Y=A+BX。
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。
扩展资料:
如果只有一个自变量X,而且因变量Y和自变量X之间的数量变化关系呈近似线性关系,就可以建立一元线性回归方程,由自变量X的值来预测因变量Y的值,这就是一元线性回归预测。
在给定了X和Y的样本观察值之后,离差平方总和的大小依赖于a和b的取值,客观上总有一对a和b的数值能够使离差平方总和达到最小。
由于离差有正有负,正负会相互抵消,通常采用观测值与对应估计值之间的离差平方总和来衡量全部数据总的离差大小。因此,回归直线应满足的条件是:全部观测值与对应的回归估计值的离差平方的总和为最小。
参考资料来源:百度百科——一元线性回归方程
一元回归的主要任务是从两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。 回归分析就是要找出一个数学模型Y=f (X),使得从X估计Y可以用一个函数式去计算。
当Y=f (X)的形式是一个直线方程时,称为 一元线性回归 。 这个方程一般可表示为Y=A+BX。 根据 最小平方法 或其他方法,可以从样本数据确定常数项A与回归系数B的值。
A、B确定后,有一个X的观测值,就可得到一个Y的估计值。 回归方程是否可靠,估计的误差有多大,都还应经过 显著性检验 和误差计算。 有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
一元线性回归
相关分析的目的在于测量变量之间的关系强度(r),回归分析的目的是考察变量之间的数量关系,主要解决以下几个问题:
(1)利用一组样本数据,确定变量之间的数学关系式;
(2)对这些关系式的可信程度进行各种统计检验,找出哪些变量的影响是显著的,哪些是不显著的;
(3)利用关系式,根据一个或几个变量的取值来估计另一个变量的取值,并给出估计的可靠程度。