所有栏目

余同取余原理

作者:建筑小强

这是同余问题的口诀.

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题.

首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60.

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,

此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”.

例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3.

【60后面的“n”请见4、,下同】

2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,

此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”.

例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7.

3、余同取余:用一个数除以几个不同的数,得到的余数相同,

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学