每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >威尔逊定理证明
-
威尔逊定理:当且仅当n为质数时,n能整除(n-1)!+1。 证明:
⭐️必要性:若n能整除(n-1)!+1,但n不是质数。则n一定可以分解为2个以上质因数乘积。假设a是其中一个质因数则a能整除(n-1)!+1;但是a能整除(n-1)!,且a不能整除1,所以a不能整除(n-1)!+1。与前述矛盾所以n一定是质数。
⭐️充分性:若n为质数p,则任意整数除以p的余数都在集合{1,2,3,...,p-1}中。首先任意两个数的乘积除以p的余数等于分别除以p的余数之积。我们只要证明(p-1)!=-1(mod p)。以7为例,若p=7则在1,2,3,4,5,6中2*4=8,3*5=15二者除以7都余1,剩下1*6=6除以7余-1.所以6!=-1(mod 7).那么如果对于任何素数p,在{2,3,4,...,p-2}中都能两两配对,使得乘积除以7余1,那么问题就解决了。
设A={2,3,4,...,p-2},从中任取一个元素a,要证明A中还存在元素b使得ab=1(mod p)。这个b必须不等于1或者p-1或者a本身,而且对于不同的a这个b也要不一样,我们先证明这样的b是存在的。不如让a去乘以所有 A的元素(加上另外两个也就是1和p-1)形成一个新的集合B={a,2a,3a,...,(p-1)a}这个集合内的数除以p的余数都是不相同的,因为p是质数且a
假如b=1那么ab=a除以p后余a而a是A 中的元素即a不等于1,故b不等于1;假如b=p-1,则ab=(p-1)a=pa-a,除以p后余a,同样由于a不等于1,所以b不能等于p-1;假如b=a,则ab=a^2,若a^2除以p余1的话那么a^2-1能被p整除,a^2-1=(a+1)(a-1)由于a是A中的元素,所以a-1也是a中的元素(a不等于1)所以a-1和p互质最小公倍数为(a-1)p,而1<(a-1)p所以不能被p整除,与前述矛盾,所以b不等于a。综上,b是A中不同于a的元素
假如有两个A中的元素a1,a2不相同,却有相同的b使得ba1和ba2除以p后余数都为1,那么|a1-a2|b能被 p整除,但是与上面同理|a1-a2|b
综上所述,对于任意质数p,{2,3,4,...,p-2}中的数都可以两两配对乘积使得除以p后的余数等于1,所以2*3*4*...*(p-2)的除以p的余数为1,而1*(p-1)除以p的余数为-1,所以(p-1)!除以p的余数为-1。所以(p-1)!+1能被p整除。
2023-10-24 02:44:47 -
首先我们将等式两边同时除以一个-1(-1必然与p互质),接下来要证明
(p−2)!≡1(modp)(p−2)!≡1(modp)
对这个东西完全没有头绪呢~,从形式上观察,考虑一下比较简单的情况。
ax≡1(modp)ax≡1(modp)
这个东西就很简单,当x是a的逆元就好。
再回到威尔逊定理,很显然,对于p=2p=2的时候,威尔逊定理成立。那么除了2以外的质数应该全是奇数,p-2也应该全是奇数才对,观察到问题成为了奇数个数相乘与1同余。
又有1的逆元是1,所以把1踢出去,也就是说剩下的偶数个数的数如果可以两两对应,乘积modp=1modp=1威尔逊定理就整出来了。
对于a∈[1,p−2]a∈[1,p−2],一定有a−1∈[1,p−2],a−1≠aa−1∈[1,p−2],a−1≠a(x2≡1x2≡1的解有且只有 1 和 p-1)
那么现在只有一个问题了,逆元是不是一一对应呢,答案是当然的,有很多途径可证明(比如定义出发,不定方程,费马小定理等)。
2023-10-24 02:44:47 -
威尔逊定理是一个数论定理,它说明了一个质数p是否是素数的方法。威尔逊定理的证明基于数学归纳法和费马小定理。通过归纳证明,我们可以得出一个公式,即(p-1)! ≡ -1 (mod p),其中p是质数。这个公式可以用来判断一个数是否是质数。如果(p-1)! ≡ -1 (mod p),那么p是一个素数;否则,p不是素数。威尔逊定理的证明是一个非常有趣和重要的数学问题,它为我们理解素数提供了一个新的角度。
2023-10-24 02:44:47
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >