所有栏目

矩阵秩相等的sn矩阵就等价吗

已输入 0 字
优质回答
  • 两个矩阵秩相同不可以说明两个矩阵等价。矩阵秩相同只是两个矩阵等价的必要条件;两个矩阵秩相同可以说明两个矩阵等价的前提是必须有相同的行数和列数,即同型。A,B矩阵同型(行数列数相同)时,有以下等价结论:【r(A)=r(B)】 等价于 【A、B矩阵等价】 等价于 【PAQ=B,其中P、Q可逆】。

    A与B等价 ←→ A经过初等变换得到B ←→ PAQ=B,其中P,Q可逆 ←→ r(A)=r(B),且A与B是同型矩阵。扩展资料:在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rank A。矩阵的秩的变化规律有:

    1、转置后秩不变2、r(A) A=0;5r(A+B)

    2023-10-24 03:09:40
  • 矩阵秩相等的sn矩阵就等价。

    秩相等的同型矩阵一定等价,因为它们的等价标准形相同。不同型的矩阵不可能等价。

    在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

    2023-10-24 03:09:40
最新问题 全部问题