所有栏目

讨论分段函数的连续性和可导性

已输入 0 字
优质回答
  • 1、连续性证明:

    左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)

    =0

    右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)

    =0

    左右极限相等,所以极限存在,即lim(x→0)f(x)=0

    而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。

    2、可导性证明:

    因为在x=0点处连续,所以可以直接用函数表达式求左右导数

    左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1

    右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0

    所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。

    2023-10-23 15:19:01
  • 1、连续性证明:左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)=0右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)=0左右极限相等,所以极限存在,即lim(x→0)f(x)=0而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。

    2、可导性证明:因为在x=0点处连续,所以可以直接用函数表达式求左右导数左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。

    2023-10-23 15:19:01
最新问题 全部问题