每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >中点弦定理
-
中点弦
对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦。
抛物线中点弦公式
抛物线C:x2=2py上,过给定点P=(α,β)的中点弦所在直线方程为:py-αx=pβ-α2。
中点弦存在的条件:2pβ>α2(点P在抛物线开口内)。
椭圆中点弦公式
椭圆C:x2/a2+y2/b2=1上,过给定点P=(α,β)的中点弦所在直线方程为:
αx/a2+βy/b2=α2/a2+β2/b2。
中点弦存在的条件:α2/a2+β2/b2<1(点P在椭圆内)。
双曲线中点弦公式
双曲线C:x2/a2-y2/b2=1上,过给定点P=(α,β)的中点弦所在直线方程为:
αx/a2-βy/b2=α2/a2-β2/b2。
中点弦存在的条件:(α2/a2-β2/b2)(α2/a2-β2/b2-1)>0(点P不在双曲线、渐近线上以及它们所围成的区域内)。
二次曲线中点弦性质与蝴蝶定理
蝴蝶定理是二次曲线一个著名定理,它充分体现了蝴蝶生态美与“数学美”的一致性.不少中数专著或杂志至今还频繁讨论.本文揭示了它与中点弦性质的紧密联系,并给出统一而简明的证明,指出了一种有用的特殊情形和一种推广形式.
引理:设两条不同的二次曲线
S:F(x,y)=a11x2+2a12xy+a22y2+2a13x+2a23y+a33=0
有A、B、C、D四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成:
(证明略)
定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合.
证 设S、S1的方程为(1)、(2),则S2方程可表为(3).因直线L0(设斜率为k)关于二次曲线S、S1、S2的共轭直径分别为:
L:(a11x+a12y+a13)+k(a12x+a22y+a23)=f(x,y)=0
因L、L1都通过L0被S与S1所截得的弦PQ与EF的共同中点O,显然L2也必通过点O,故O也是L0被S2所截得的弦GH的中点.
注 两直线AB和CD或AD和CB或AC和BD都可看做二次曲线S1的特殊情形,甚至E和F重合于O.故本定理包括了蝴蝶定理众多情形.
定理2 设AB∥CD,S和S1是过A、B、C、D四点的任意两条二次曲线.若平行于AB的任意直线与S、S1各有两个交点,则夹在两曲线之间的两线段相等.
证 设AB、CD的中点分别为M、N,又AB∥CD,故直线MN就是AB关于S和S1的共轭直径,故若平行于AB的任意直线被S、S1所截的弦PQ、EF有共同中点O,故有PE=QF,命题得证.
注 由于PQ可为AB与CD之间任意平行弦,皆有PE=QF,故夹在S和S1之间的两曲边区域△1和△2面积相等.它酷似蝴蝶两翼,不过并非轴对称,而是沿AB方向共轭.如果世上真有这样的蝴蝶,飞行亦能平衡自如.
2023-10-23 16:14:36 -
中点弦
对于给定点P和给定的圆锥曲线C,若C上的某条弦AB过P点且被P点平分,则称该弦AB为圆锥曲线C上过P点的中点弦。其中圆锥曲线弦为连接圆锥曲线C上不同两点A、B的线段AB称为圆锥曲线C的弦。
2023-10-23 16:14:36 -
A、B、C、D四个公共点,其中无三点共线,则过A、B、C、D四点的任意一条二次曲线S2必可唯一地表示成:(证明略)定理1 设三条不同的二次曲线(S、S1、S2)有A、B、C、D四个公共点,其中无三点共线;又直线L0被S、S1、S2各截得一弦.若其中两弦中点重合,则第三弦中点亦重合。
2023-10-23 16:14:36
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >