每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >乘法积分运算法则
-
定积分的乘除法则:
定积分有分步积分,公式∫udv = uv - ∫vdu
没有什么乘除法则
定积分没有乘除法则,多数用换元积分法和分部积分法。
换元积分法就是对复合函数使用的:
设y = f(u),u = g(x)
∫ f[g(x)]g'(x) dx = ∫ f(u) du
换元积分法有分第一换元积分法:设u = h(x),du = h'(x) dx
和第二换元积分法:即用三角函数化简,设x = sinθ、x = tanθ及x = secθ
还有将三角函数的积分化为有理函数的积分的换元法:
设u = tan(x/2),dx = 2/(1 + u²) du,sinx = 2u/(1 + u²),cosx = (1 - u²)/(1 + u²)
分部积分法多数对有乘积关系的函数使用的:
∫ uv' dx
= ∫ udv
= uv - ∫ vdu
= uv - ∫ vu' du
其中函数v比函数u简单,籍此简化u。是由导数的乘法则(uv)' = uv' + vu'推导过来的。
有时候v' = 1的,例如求∫ lnx dx、∫ ln(1 + x) dx等等。
还有个有理积分法:将一个大分数分裂为几个小分数。
例如1/(x² + 3x + 2) = 1/((x + 1)(x + 2)) = 1/(x + 1) - 1/(x + 2)
2023-10-23 17:11:42 -
关于这个问题,乘法积分运算法则是指如果一个积分式可以分解成两个函数的乘积形式,即 $f(x)g(x)$,那么这个积分式可以通过积分分部公式进行求解。具体而言,积分分部公式是:
$$int udv = uv - int vdu$$
其中 $u$ 和 $v$ 是两个可微函数。应用积分分部公式,我们可以将 $f(x)g(x)$ 分解成两个可微函数 $u$ 和 $v$ 的积分形式:
$$int f(x)g(x)dx = int u(x)v(x)dx$$
其中 $u$ 和 $v$ 的具体选取可以有多种方式,常用的一种是让 $u$ 等于 $f(x)$,$dv$ 等于 $g(x)dx$,这样可以得到:
$$int f(x)g(x)dx = f(x)int g(x)dx - int f'(x)int g(x)dx dx$$
其中 $int g(x)dx$ 和 $int f'(x)g(x)dx$ 可以通过基本积分公式进行求解。
2023-10-23 17:11:42 -
关于这个问题,乘法积分运算法则是指,将积分式中的被积函数拆分成多个因式的乘积形式,然后依次对每个因式进行积分,最后将所有积分结果相乘得到原积分式的解。具体地,若有积分式:
∫f(x)dx
其中f(x)可以拆分成m个因式的乘积形式:
f(x)=g1(x)g2(x)…gm(x)
则有:
∫f(x)dx=∫g1(x)dx∫g2(x)dx…∫gm(x)dx
其中每个∫gi(x)dx表示对gi(x)进行积分的结果。需要注意的是,乘法积分运算法则只适用于由多个因式的乘积形式构成的积分式,若积分式不满足此条件,则需要采用其他方法求解。
2023-10-23 17:11:42 -
选择x作导数,e^x作原函数,则
积分=xe^x-se^xdx=xe^x-e^x+C
一般可以用分部积分法: 形式是这样的: 积分:u(x)v'(x)dx=u(x)v(x)-积分:u'(x)v(x)dx 被积函数的选择。
积分分类
不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x).(C∈R C为常数).也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无
定积分限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
2023-10-23 17:11:42
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >