所有栏目

极大似然估计法π的意义

已输入 0 字
优质回答
  • 极大似然法即最大似然法最大似然法(Maximum Likelihood,ML)也称为最大概似估计,也叫极大似然估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在 1912 年至1922 年间开始使用的。最大似然法明确地使用概率模型, 其目标是寻找能够以较高概率产生观察数据的系统发生树。 最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个 T和一个 G,我们有理由认为,C和 T所在的序列之间的关系很有可能更接近。由于被研究序列的共同祖先序列是未知的,概率的计算变得复杂;又由于可能在一个位点或多个位点发生多次替换,并且不是所有的位点都是相互独立,概率计算的复杂度进一步加大。尽管如此,还是能用客观标准来计算每个位点的概率, 计算表示序列关系的每棵可能的树的概率。 然后,根据定义,概率总和最大的那棵树最有可能是反映真实情况的系统发生树。

    2023-10-23 17:17:45
  • 极大似然估计法是求估计的另一种方法。它最早由高斯提出。后来为费歇在1912年的文章中重新提出,并且证明了这个方法的一些性质。

    极大似然估计这一名称也是费歇给的。这是一种上前仍然得到广泛应用的方法。

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是:一个随机试验如有若干个可能的结果A,B,C,…。

    若在一次试验中,结果A出现,则一般认为试验条件对A出现有利,也即A出现的概率很大。

    2023-10-23 17:17:45
最新问题 全部问题