每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >ns方程是什么
-
纳维-斯托克斯方程(英文名:Navier-Stokes equations),描述粘性不可压缩流体动量守恒的运动方程。简称N-S方程。粘性流体的运动方程首先由纳维在1827年提出,只考虑了不可压缩流体的流动。泊松在1831年提出可压缩流体的运动方程。圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式,都称为Navier-Stokes方程,简称N-S方程。三维空间中的N-S方程组光滑解的存在性问题被美国克雷数学研究所设定为七个千禧年大奖难题之一。
N-S方程定义
纳维-斯托克斯方程(Navier-Stokes equation)是描述粘性不可压缩流体动量守恒的运动方程,简称N-S方程。此方程是法国科学家C·L·M·H·纳维于1821年和英国物理学家G·G·斯托克斯于1845年分别建立的,故名。它的矢量形式为:
在直角坐标中,它可写成
式中,是流体密度;是速度矢量;是压力,是流体在时刻,在点处的速度分量;是单位体积流体受的外力,若只考虑重力,则;常数是动力粘度。
N-S方程概括了粘性不可压缩流体流动的普遍规律,因而在流体力学中具有特殊意义。
粘性可压缩流体运动方程的普遍形式为:
其中为流体应力张量;为单位张量;为变形速率张量,其在直角坐标中的分量为:
为膨胀粘性系数,一般情况下。若游动流体是均质和不可压缩的,这时为常数。则方程(3)可简化成N-S方程(1)和(2)。如果再忽略流体粘性,则(1)就变成通常的欧拉方程形式:
即无粘性流体运动方程(见流体力学基本方程组)。
N-S方程的影响及意义
后人在此基础上又导出适用于可压缩流体的N-S方程。以应力表示的运动方程,需补充方程才能求解。N-S方程反映了粘性流体(又称真实流体)流动的基本力学规律,在流体力学中有十分重要的意义。它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前只有在某些十分简单的特例流动问题上才能求得其精确解;但在部分情况下,可以简化方程而得到近似解。例如当雷诺数时,绕流物体边界层外 ,粘性力远小于惯性力 ,方程中粘性项可以忽略,N-S方程简化为理想流动中的欧拉方程;而在边界层内,N-S方程又可简化为边界层方程,等等。在计算机问世和迅速发展以来,N-S方程的数值求解才有了较大的发展。
N-S方程的求解
从理论上讲,有了包括N-S方程在内的基本方程组,再加上一定的初始条件和边界条件,就可以确定流体的流动。但是,由于N-S方程比欧拉方程多了一个二阶导数项,因此,除在一些特定条件下,很难求出方程的精确解。
可求得精确解的最简单情况是平行流动。这方面有代表性的流动是圆管内的哈根-泊肃叶流动(详见管流)和两平行平板间的库埃特流动(详见牛顿流体)。
在许多情况下,不用解出N-S方程,只要对N-S方程各项作量级分析,就可以确定解的特性,或获得方程的近似解。
对于雷诺数的情况,方程左端的加速度项与粘性项相比可忽略,从而可求得斯托克斯流动的近似解。RA·密立根【罗伯特·安德鲁·密立根】根据这个解给出了一个有名的应用(密立根油滴实验),即空气中细小球状油滴的缓慢流动。
对于雷诺数的情况,粘性项与加速度项相比可忽略,这时粘性效应仅局限于物体表面附近的边界层内,而在边界层之外,流体的行为实质上同无粘性流体一样,所以其流场可用欧拉方程求解。
2023-10-23 11:28:51 -
NS方程就是描述流体受力及流动表现的方程。方程的内容说白了就是F=ma。
F主要由(粘滞力,压力,重力组成),m就是ρ。
a就是后面哪一串(加速度由时间变化和空间变化影响,加入了场论的一些最基本概念)就是求得解析解还不行,但是求数值解的方法一大堆(你可以自由选择是追踪指点还是关注空间点)。各种模拟软件处理这中问题已经相当成熟。
2023-10-23 11:28:51 -
ns方程是纳维-斯托克斯方程。
纳维-斯托克斯方程是用于描述流体运动的方程,可以看作是流体运动的牛顿第二定律。就NS方程的推导及其所反映的客观现象而言,NS方程是对流体微元在瞬时意义上变形运动的描述。在流体力学本构方程中的压力是天外来客,在力学本质上,压力的空间梯度是微元体惯性力的表征。
ns方程的由来:
1821年,法国著名工程师克劳德-路易·纳维首先推广了欧拉关于流体力学的理论,纳威此时考虑了分子间的作用力,并在方程中加了一个粘性常数。然而这仿佛还不够,1845年,爱尔兰数学家乔治·加布里埃尔·斯托克斯爵士从连续统的模型出发,给出了具有2个粘性常数的流体力学方程,这也就是现在鼎鼎大名的纳维斯托克斯方程,N-S方程。
2023-10-23 11:28:51
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >