所有栏目

怎样理解柯西中值定理

已输入 0 字
优质回答
  • 柯西中值定理是拉格朗日中值定理的推广,是微分学的基本定理之一。其几何意义为,用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。该定理可以视作在参数方程下拉格朗日中值定理的表达形式。

    柯西中值定理粗略地表明,对于两个端点之间的给定平面弧,至少有一个点,使曲线在该点的切线平行于两端点所在的弦。

    2023-10-23 19:09:24
  • 柯西中值定理:设函数f(x),g(x)满足是在[a,b]连续,(a、b)可导,g(x)≠0(x∈(a,b)),则至少存在一点,ξ∈(a,b),使f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]

    柯西中值定理是数学中非常重要的定理之一,它被广泛的应用在相关数学问题的证明当中。柯西中值定理认为,两个不同的函数在相关条件满足的情况下,存在一个点ξ,使得这两个函数在该点处的导数之比等于其在区间端点函数值的差之比。

    2023-10-23 19:09:24
最新问题 全部问题