每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >什么是逆矩阵
-
逆矩阵
设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E。则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
基本信息
中文名
逆矩阵
别名
非奇异矩阵满秩矩阵
外文名
inverse matrix
定义
一个n阶方阵A称为可逆的,或非奇异的,如果存在一个n阶方阵B,使得
并称B是A的一个逆矩阵。不可逆的矩阵称为奇异矩阵。A的逆矩阵记作A。
定理
验证两个矩阵互为逆矩阵
按照矩阵的乘法满足:
故A,B互为逆矩阵。
逆矩阵的唯一性
若矩阵A是可逆的,则A的逆矩阵是唯一的。
证明:
若B,C都是A的逆矩阵,则有
所以,即A的逆矩阵是唯一的。
判定简单的矩阵不可逆
如
假设有
是A的逆矩阵,则有
比较其右下方一项:。
若矩阵A可逆,则
若A可逆,即有,使得,故
计算
若,则矩阵A可逆,且
其中,A为矩阵A的伴随矩阵。
性质
1、可逆矩阵一定是方阵。
2、(唯一性)如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作。
4、可逆矩阵A的转置矩阵A也可逆,并且(转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即,则,则。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。
证明
1、逆矩阵是对方阵定义的,因此逆矩阵一定是方阵。设B与C都为A的逆矩阵,则有
2、假设B和C均是A的逆矩阵,,因此某矩阵的任意两个逆矩阵相等。
3、由逆矩阵的唯一性,A的逆矩阵可写作(A)和A,因此相等。
AB=AC
4、矩阵A可逆,有。由可逆矩阵的定义可知,A可逆,其逆矩阵为(A)。而(A)也是A的逆矩阵,由逆矩阵的唯一性,因此。
5、1)在两端同时左乘A(BA=O同理可证),得,故)由(同理可证),,等式两边同左乘A,因A可逆。得,即。
可逆的等价条件
1、齐次方程方程组仅有零解。
2、A行等价与单位矩阵I
3、A可写成若干个初等矩阵之积。
4、是(当时,A称为奇异矩阵),利用这个方法,来判定一个矩阵是否可逆更加方便。
证明
必要性:当矩阵A可逆,则有。(其中I是单位矩阵)
两边取行列式,
由行列式的性质:
则,(若等于0则上式等于0)
充分性:有伴随矩阵的定理,有
(其中是的伴随矩阵。)
当,等式同除以,变成
比较逆矩阵的定义式,可知逆矩阵存在且逆矩阵
求法
求逆矩阵的初等变换法
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵
2023-10-23 20:20:03 -
设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵,或可逆是线性代数中最重要的内容。
1、下列命题等价:
1、)A为n阶可逆矩阵2)A是非奇异的。
3)A是满秩的。
4)A是行满秩的。
5)A是列满秩的。
6)方程组AX=0仅有零解7)方程组AX=B仅有唯一解。8)A的行向量组线性无关。9)A的列向量组线性无关。10)A的任何特征值均非零。
2、可逆的重要性体现在:AB=C 表示B线性变换到 C, B与C是等价矩阵。同秩,同可逆或不可逆。是以B的列向量与C的列向量为基构成的向量空间为相同的空间。扩展资料逆矩阵性质定理可逆矩阵一定是方阵。如果矩阵A是可逆的,其逆矩阵是唯一的。A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。两个可逆矩阵的乘积依然可逆。矩阵可逆当且仅当它是满秩矩阵。
2023-10-23 20:20:03 -
逆矩阵(inverse matrix),又称乘法反方阵、反矩阵。广义逆阵(Generalized inverse)又称伪逆,是对逆阵的推广。一般所说的伪逆是指摩尔-彭若斯广义逆,它是由E. H. Moore和Roger Penrose分别独立提出的。伪逆在求解线性最小二乘问题中有重要应用。
2023-10-23 20:20:03
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >