每年的9月20日,是全国爱牙日。作为中国特有的节日,爱牙日的由来主要与兰州地区的牙科医生--白成平有关。白成平在17岁的时候,就跟随美国口腔医学博士毛燮均学习牙医技术。此后,他便一直在兰州一家医院担任牙科医生。在50多年的牙医生涯中,他对人
全部3个回答 >如何将直线的普通方程化为参数方程
-
例如圆x^2+y^2=4x参数方程的表示:先配方(x-2)^2+(y-0)^2=2^2,再令x-2=2×cost,y-0=2×sint,得参数方程:x=2+2cost,y=2sint其中t表示的是圆上某一点P(x,y)与圆心A(2,0)组成的射线AP与x轴的夹角,所以t∈[0,2π]极坐标方程的表示:
由圆的方程x^2+y^2=4x,代入x=ρcosθ,y=ρsinθ,得圆的极坐标方程ρ=4cosθ这里的ρ表示圆上一点P(x,y)到极点,也就是坐标原点〇的距离.角度θ的范围一般有两种表示方法,一种是θ表示从极轴逆时针转向射线〇P的角度的大小,所以θ的范围[0,2π];
另一种是θ是表示射线〇P与极轴,也就是x轴的夹角,并且规定极轴上方的夹角为正,下方为负,所以θ的范围是[-π,π].很明显,对于圆x^2+y^2=4x来说,θ的表示用第二种形式会简单些,即θ∈[-π/2,π/2]所以,圆x^2+y^2=4x的参数方程是x=2+2cost,y=2sint,t∈[0,2π]极坐标方程是ρ=4cosθ,θ∈[-π/2,π/2]。
2023-10-23 11:48:33 -
设直线方程为:y=kx+b,k=tanα=m,α为直线的倾角,M(x₁,y₁)是直线上的任意一点,那么直线的参数方程可写为;x=x₁+nt 或 x=x₁+tcosαy=y₁+mt y=y₁+tsinα。
关键就是设出一个参数,把原来的普通方程中的x,y替换,这是总体思路,但到具体的问题得具体分析,设置这个参数是有技巧的,方法多种多样,不唯一。
1.比如直线y=x+5,令x=t,那么:y=t+5
所以该直线的参数方程为: x=,{ y=t+5
2.再如直线 2x+y-4=0,令y=t,那么:2x+t-4=0,易得:x=(4-t)/2所以直线的参数方程为: x=(4-t)/2, y=t
3.比如对于圆的方程:x^2+y^2=4,设置参数方程为:x=2cosa,y=2sina4.再例如椭圆方程,x^2/9+y^2/16=1,设置参数可为:x=3cosa,y=4sina
2023-10-23 11:48:33 -
设直线方程为:y=kx+b,k=tanα=m,α为直线的倾角,M(x₁,y₁)是直线上的任意一点,那么直线的参数方程可写为;x=x₁+nt 或 x=x₁+tcosαy=y₁+mt y=y₁+tsinα。
关键就是设出一个参数,把原来的普通方程中的x,y替换,这是总体思路,但到具体的问题得具体分析,设置这个参数是有技巧的,方法多种多样,不唯一。
1.比如直线y=x+5,令x=t,那么:y=t+5
所以该直线的参数方程为:x=,{ y=t+5
2.再如直线 2x+y-4=0,令y=t,那么:2x+t-4=0,易得:x=(4-t)/2所以直线的参数方程为:x=(4-t)/2,y=t
3.比如对于圆的方程:x^2+y^2=4,设置参数方程为:x=2cosa,y=2sina4.再例如椭圆方程,x^2/9+y^2/16=1,设置参数可为:x=3cosa,y=4sina
2023-10-23 11:48:33 -
假设原来直线经过点(x。,y。)且其倾斜角为θ,原来直线的方程为y一y0=tanθ(x-x0),那么直线的参数方程为x=xo十tcosθ,y=y。十tsinθ(联立),t为参数。写直线的参数方程一般的条件是直线经过一个定点,且倾斜角为θ。其中t为参数,表示为直线上的动点到定点(ⅹ。,y。)的有向线段的数量。
2023-10-23 11:48:33 -
首先在直线上任取一点P(x0,y0),再找到直线的斜率k,即倾斜角的正切值tanα=k,进而可以得到倾斜角的余弦值cosα和正弦值sinα,则可以得到直线的参数方程为:x=x0+tcosα,y=y0+tsinα,(t为参数)。
如果是写直线参数方程的一般式,那就容易了,随便取x=t,解出y即可。
2023-10-23 11:48:33
-
问 爱牙日的由来答
-
问 爱尔兰是哪个国家答
爱尔兰被称为翡翠岛国,这里西临大西洋、东靠爱尔兰海,与英国隔海相望。爱尔兰其实是一个独立的西欧国家,为北美通向欧洲的通道。爱尔兰、英格兰、苏格兰、威尔士是四个民族,也是四个地方。在历史上,这四个地方分分合合,瓜葛不断。1918年前,四个民族
全部10个回答 > -
问 圣城是哪个城市答
希腊雅典、中国洛阳、沙特麦加和以色列耶路撒冷被世界公认为世界四大圣城。关于洛阳圣城称号的由来,可追溯至上古时期。 相传上古时期,洛阳孟津县境内的黄河中出现背着“河图”的龙马和背着“洛书”的神龟,它们把图和书献给了伏羲后,伏羲根据图和书
全部10个回答 > -
问 芥菜的营养价值答
食材简介: 芥菜又称盖菜、挂菜,是中国的特产蔬菜。芥菜植株一般可高150厘米,幼茎及叶具有毛刺。经过长期选择和栽培,芥菜出现了不同的变种:根芥菜,也叫大头菜,主要用来腌制咸菜;叶芥菜俗称雪里红,可制成霉干菜;茎芥菜,用来制作榨菜;芽芥
全部10个回答 > -
问 猪肝的营养价值答
食材简介: 猪肝又名血肝,是猪的肝脏,与胆相连,肝脏是动物体内储存养料和解毒的重要器官。猪肝在消化系统中能够制造胆汁,一般呈紫红色、红褐色,质软而脆,呈楔形,右端圆钝,左端扁薄,可分为上、下两面,前后两缘,左右两叶。 营养功效:
全部10个回答 > -
问 花椒的营养价值答
食材简介: 花椒,又叫麻椒、蜀椒、点椒等,是我国原产的一种干、枝、叶、果均具浓郁辛香的落叶灌木或小乔木。它最初野生于我国中西部,是作为是敬神的香物。现在广泛分布于我国南北各地。由于它的果皮暗红,密生粒状突出的腺点,犹如细斑,故花椒之名
全部10个回答 > -
问 银鱼的功效与作用答
食材简介: 银鱼,又称炮仗鱼、面条鱼、白饭鱼等,通体白色,整体长约10厘米,刺少,有牙并且十分锋利。银鱼具有海洋至江河洄游的习性,多生活于水的下层,我国的太湖、西湖、马湖是三大银鱼盛产湖。 营养功效: 银鱼所含营养十分丰富,具有高
全部10个回答 > -
答
大理是悠闲和浪漫的代名词,下关的风,上关的花,苍山的雪,洱海的月,“风花雪月”构成了大理最著名的特色。去大理,我们的路线是先游览大理古城周边及崇圣寺三塔,然后环洱海游,最后以登苍山结束。大理古城是大理旅游的核心区,这里承载着大理历史文化、宗
全部10个回答 > -
问 原单和正品的区别答
现在的市场可以说是乌烟瘴气,光各种产品的头衔都搞的人一头雾水,那么,原单和正品有什么区别呢?所谓的原单货和“真货”的唯一区别,不过是“庶出”而已,数量很少。众所周知,现在国外60%以上的奢侈品都在中国生产。国外的一些大品牌会在国内找一些代工
全部10个回答 > -
问 太湖的简介答
“太湖美呀太湖美,美就美在太湖水”,1978年,这首《太湖美》传遍大江南北,太湖一时成为了大家都心中的向往之地。太湖位于江苏省南部,长江三角洲南部,是中国著名的五大淡水湖之一。太湖湖泊面积2427.8平方公里,湖岸线全长393.2公里。其西
全部10个回答 >