
低噪声放大器, 噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。
噪声系数很低的放大器。一般用作各类无线电接收机的高频或中频前置放大器,以及高灵敏度电子探测设备的放大电路。在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F来表示。理想放大器的噪声系数 F=1(0分贝),其物理意义是输入信噪比等于输出信噪比。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温 参放的噪声 温度Te可低于几十度(绝对温度),致冷参量放大器可达20K以下,砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于 2 分贝。放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。为了兼顾低噪声和高增益的要求,常采用共发射极一共基极基联的低噪声放大电路。
在放大微弱信号的场合,放大器自身的噪声对信号的干扰可能很严重,因此希望减小这种噪声,以提高输出的信噪比。由放大器所引起的信噪比恶化程度通常用噪声系数F(见放大)来表示或用取对数值的噪声系数FN表示FN=10lgF(dB)理想放大器的噪声系数F=1(0分贝),其物理意义是输出信噪比等于输入信噪比。设计良好的低噪声放大器的FN可达3分贝以下。在噪声系数很低的场合,通常也用噪声温度Te作为放大器噪声性能的量度:Te=T0(F-1)。式中T0为室温。在这里,它和噪声温度Te的单位都是开尔文(K)。多级放大器的噪声系数F主要取决于它的前置级。若F1,F2,…,Fn依次为各级放大器的噪声系数,则式中A1,…,An-1依次为各级放大器的功率增益。前置级的增益A1越大,则其后各级放大器对总噪声系数F的影响越小。单级放大器的噪声系数主要取决于所用的有源器件及其工作状态。现代的低噪声放大器大多采用晶体管、场效应晶体管;微波低噪声放大器则采用变容二极管参量放大器,常温参放的噪声温度Tθ可低于几十度(绝对温度),致冷参量放大器可达20K以下。砷化镓场效应晶体管低噪声微波放大器的应用已日益广泛,其噪声系数可低于2分贝。晶体管的自身噪声由下列四部分组成。①闪烁噪声,其功率谱密度随频率f的降低而增加,因此也叫作1/f噪声或低频噪声。频率很低时这种噪声较大,频率较高时(几百赫以上)这种噪声可以忽略。
②基极电阻rb'b的热噪声和。
③散粒噪声,这两种噪声的功率谱密度基本上与频率无关。
④分配噪声,其强度与f的平方成正比,当f高于晶体管的截止频率时,这种噪声急剧增加。图1是晶体管噪声系数F随频率变化的曲线。对于低频,特别是超低频低噪声放大器,应选用1/f噪声小的晶体管;对于中、高频放大,则应尽量选用高的晶体管,使其工作频率范围位于噪声系数-频率曲线的平坦部分。
场效应晶体管没有散粒噪声。在低频时主要是闪烁噪声,频率较高时主要是沟道电阻所产生的热噪声。通常它的噪声比晶体管的小,可用于频率高得多的低噪声放大器。
放大器的噪声系数还与晶体管的工作状态以及信源内阻有关。图2是考虑了自身噪声的放大器模型。us和Rs分别为信源电压和内阻,Rs的热噪声电压均方值等于4kTRs墹f,式中T为绝对温度,k为玻耳兹曼常数,墹f为放大器通带。放大器自身噪声用噪声电压均方值和噪声电流均方值表示,它们是晶体管工作状态的函数,可以用适当方法来测量。这样,放大器的噪声系数F可写作放大管的直流工作点一旦确定,和亦随之确定,这样,噪声系数F将主要是信源内阻Rs的函数。Rs有一使F为最小的最佳值(图3)。在工作频率和信源内阻均给定的情况下,噪声系数也和晶体管直流工作点有关。发射极电流IE有一使噪声系数最小的最佳值,典型的F-IE曲线如图4所示。
晶体管放大器的噪声系数基本上与电路组态无关。但共发射极放大器具有适中的输入电阻,F为最小时的最佳信源电阻Rs和此输入电阻比较接近,输入电路大体上处于匹配状态,增益较大。共基极放大器的输入电阻小,共集电极放大器的输入阻抗高,两者均不易同时满足噪声系数小和放大器增益高的条件,所以都不太适于作放大键前置级之用。为了兼顾低噪声和高增益的要求,常采用共发射极-共基极级联的低噪声放大电路。可调整能力和共通引脚安排带来设计优化和灵活度
·1500MHz到2300MHz工作
同级最佳噪声指数(NF):0.48dB @ 1900MHz
35dBm OIP3
17.8dB增益
21dBm P1dB @ 1900MHz
·2300MHz到4000MHz工作
低噪声指数(NF):0.59dB @ 2500MHz
35dBm OIP3
17.5dB增益
22dBm P1dB @ 2500MHz
·单一5V电源,低功耗
典型51mA (1500MHz - 2300MHz)
典型56mA (2300MHz - 4000MHz)
·器件采共通引脚安排和匹配电路
简化印刷电路板设计和生产
·采用特有工艺:0.25μm GaAs增强模式pHEMT
封装和温度范围
这两款低噪声放大器采用2.0 x 2.0 x 0.85 mm大小,符合RoHS要求的8引脚表面贴装QFN封装供货,所有器件都可以在-40oC到+85oC的宽广温度范围下工作。
因此Ts之值为
Tss==Te ++ TaTA/LaA ++(1 -- 1/LaLA)To
式中:
TsTs为接收系统噪声温度
To为接收系统折算到LNA输入端的等效噪声温度
TaTA为天线噪声温度
LaLAA为馈线损耗(真值)
To 为环境温度(To==293K)
可以算出,当馈线损耗增大0.1dB时,系统噪声温度就要增加约6.7K。可见馈线损耗对系统噪声温度影响极大,故馈线要尽可能短。实际上地球站的LNA往往直接安装在馈源尾端的机舱中。
LNA经历了早期液氦致冷的参量放大器、常温参量放大器的发展过程,随着现代科学技术的高速发展,近几年已被微波场效应晶体管放大器所取代,此种放大器具有尺寸小、重量轻和成本低的优异特性。特别是在射频特性方面具有低噪声、宽频带和高增益的特点。在C、Ku、Kv 等频段中已被广泛的使用,目前常用的低噪声放大器的噪声温度可低于45K。