所有栏目

统计悖论

作者:百科科普

这个悖论可追溯到18世纪,它是一个非传递关系的典型,这种关系是在人们作两两对比选择时可能产生的。人们也许已经很熟悉传递关系的概念。它适用于诸如“高于”、“大于”、“小于”、“等于”、“先于”、“重于”等关系。一般讲,如果有一个关系R使得xRy(即x对y是R关系)、yRz成立时,则xRz成立,这时R就是可传递关系。

统计悖论详细介绍

这个悖论可追溯到18世纪,它是一个非传递关系的典型,这种关系是在人们作两两对比选择时可能产生的。人们也许已经很熟悉传递关系的概念。它适用于诸如“高于”、“大于”、“小于”、“等于”、“先于”、“重于”等关系。一般讲,如果有一个关系R使得xRy(即x对y是R关系)、yRz成立时,则xRz成立,这时R就是可传递关系。

假定有三个人—阿贝尔、伯恩斯和克拉克竞选总统。民意测验表明,选举人中有2/3愿意选A不愿选B,有2/3愿选B不愿选C。是否愿选A不愿选C的最多?

不一定!如果选举人下表那样排候选人,就会引起一个惊人的逆论。

三分之一的人,对选举人的喜好是:A,B,C;

另外三分之一的人,对选举人的喜好是:B,C,A;

最后三分之一的人,对选举人的喜好是:C,A,B。

所以,有2/3宁愿选A而不愿选B;同样,有2/3宁愿选B而不愿选C;有2/3宁愿选C而不愿选A!

选举悖论使人迷惑,是因为我们以为“好恶”关系总是可传递的,如果某人认为A比B好,B比C好,我们自然就以为他觉得A比C好。这条悖论说明事实并不总是如此。多数选举人选A优于B,多数选举人选B优于C,还是多数选举人选C优于A。这种情况是不可传递的!

这条悖论有时称为阿洛悖论,肯尼思·阿洛曾根据这条悖论和其他逻辑理由证明了,一个十全十美的民主选举系统在原则上是不可能实现的,他因此而分享了1972年诺贝尔经济学奖金。

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学