所有栏目

有界数列

作者:爱百科

有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。

有界数列详细介绍

有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。

有界数列定义

若数列{Xn}满足:对一切n 有Xn≤M(其中M是与n无关的常数) 称数列{Xn}上有界(有上界)并称M是他的一个上界。

对一切n 有Xn≥m(其中m是与n无关的常数)称数列{Xn}下有界(有下界)并称m是他的一个下界。

一个数列{Xn},若既有上界又有下界,则称之为有界数列。显然数列{Xn}有界的一个等价定义是:存在正实数X,使得数列的所有项都满足|Xn|≤X,n=1,2,3,……。

有界数列举例

有界数列:

①1,2,3,4

②{1/n},n=1,2,3...

无界数列:

1,2,3,4,5,6...

sin1,sin2+2……

有界数列应用

数列有极限的必要条件:

数列单调增且有上界 或 数列单调减且有下界=>数列有极限。

热点导航
教育资讯 知道问答 公考资讯 司法考试 建筑知识 工作范文 大学排名 报考专业 学习方法 句子美文 秒知回答 作业解答 精选答案 知途问学