所有栏目

求矩阵的n次方的方法

已输入 0 字
优质回答
  • 一般有以下几种方法:

    1、计算A^2,A^3 找规律,然后用归纳法证明。

    2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A注:β^Tα =α^Tβ = tr(αβ^T)3、分拆法:A=B+C,BC=CB,用二项式公式展开。适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 04、用对角化 A=P^-1diagPA^n = P^-1diag^nP扩展资料:将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。 0

    2023-12-25 07:41:57
  • 这要看具体情况,一般有这几种方法:计算A^2,A^3 找规律,然后用归纳法证明;若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A;分拆法,A=B+C,BC=CB,用二项式公式展开,适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0

    矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。

    2023-12-25 07:41:57
最新问题 全部问题